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Abstract 

In today’s business environment, the trend towards more product variety and customization is unbroken. Due to this development, the need of 
agile and reconfigurable production systems emerged to cope with various products and product families. To design and optimize production
systems as well as to choose the optimal product matches, product analysis methods are needed. Indeed, most of the known methods aim to 
analyze a product or one product family on the physical level. Different product families, however, may differ largely in terms of the number and 
nature of components. This fact impedes an efficient comparison and choice of appropriate product family combinations for the production
system. A new methodology is proposed to analyze existing products in view of their functional and physical architecture. The aim is to cluster
these products in new assembly oriented product families for the optimization of existing assembly lines and the creation of future reconfigurable 
assembly systems. Based on Datum Flow Chain, the physical structure of the products is analyzed. Functional subassemblies are identified, and 
a functional analysis is performed. Moreover, a hybrid functional and physical architecture graph (HyFPAG) is the output which depicts the 
similarity between product families by providing design support to both, production system planners and product designers. An illustrative
example of a nail-clipper is used to explain the proposed methodology. An industrial case study on two product families of steering columns of 
thyssenkrupp Presta France is then carried out to give a first industrial evaluation of the proposed approach. 
© 2017 The Authors. Published by Elsevier B.V. 
Peer-review under responsibility of the scientific committee of the 28th CIRP Design Conference 2018. 
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1. Introduction 

Due to the fast development in the domain of 
communication and an ongoing trend of digitization and
digitalization, manufacturing enterprises are facing important
challenges in today’s market environments: a continuing
tendency towards reduction of product development times and
shortened product lifecycles. In addition, there is an increasing
demand of customization, being at the same time in a global 
competition with competitors all over the world. This trend, 
which is inducing the development from macro to micro 
markets, results in diminished lot sizes due to augmenting
product varieties (high-volume to low-volume production) [1]. 
To cope with this augmenting variety as well as to be able to
identify possible optimization potentials in the existing
production system, it is important to have a precise knowledge

of the product range and characteristics manufactured and/or 
assembled in this system. In this context, the main challenge in
modelling and analysis is now not only to cope with single 
products, a limited product range or existing product families,
but also to be able to analyze and to compare products to define
new product families. It can be observed that classical existing
product families are regrouped in function of clients or features.
However, assembly oriented product families are hardly to find. 

On the product family level, products differ mainly in two
main characteristics: (i) the number of components and (ii) the
type of components (e.g. mechanical, electrical, electronical). 

Classical methodologies considering mainly single products 
or solitary, already existing product families analyze the
product structure on a physical level (components level) which 
causes difficulties regarding an efficient definition and
comparison of different product families. Addressing this 
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Abstract  

The performance of discrete parts manufacturing systems is heavily influenced by unplanned machine breakdowns. Predictive maintenance 
allows for the conversation of unplanned machine breakdowns to scheduled corrective maintenance actions. We present a data-driven approach 
for estimating the probability of machine breakdown during specified time interval in the future. Machine learning algorithms are utilized for a 
specific use-case which is based on real-world data-sets including machine log messages, event logs and operational information. The paper 
describes applied data-mining, feature-extraction and machine learning methods and concludes with results indicating that machine failures can 
be reliably predicted up to 168 hours in advance. 
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1. Introduction 

Manufacturing industry operate in global markets dealing 
with strong competition, fluctuating market conditions, and 
new technologies. To be profitable, companies are undertaking 
much effort to improve quality and productivity, as well as to 
secure a high level of reliability in order to reduce costs. 
Therefore, flexible production systems and the task of 
production planning and control are becoming more and more 
relevant. In terms of improvements and a company’s 
performance, maintenance strategies play a key role. An 
effective maintenance strategy improves equipment 
availability and extends equipment life. In contrast, poor 
maintenance operations decrease equipment availability by 
allowing more frequent breakdowns, which lead to delays in 
production scheduling and may result in scrap. Summarizing, 
the performance of a company is significantly influenced by its 
maintenance strategies in place. Historically, reactive 
maintenance or ‘fire-fighting’, where equipment is just 
repaired when it breaks down, was the main maintenance 
approach deployed by most companies. In contrast, the scope 

of a proactive maintenance strategy is to prevent equipment to 
suffer from breakdowns. This includes preventive and 
predictive maintenance strategies. Breakdowns are avoided by 
monitoring equipment information (e.g. deterioration) to assess 
the equipment state and executing maintenance operations 
before the equipment state exceeds a predefined threshold (e.g. 
a wear limit). [1, 2] 

Preventive maintenance (PM) strategies trigger 
maintenance operations in predefined intervals or evaluate 
prescribed criteria in order to reduce the probability of failures. 
While time-based maintenance monitors the operating time or 
produced parts since the last maintenance operation, condition-
based maintenance uses certain measurement information 
about the physical condition of the equipment such as 
vibration, temperature, or noise. [2, 3, 5]  

Predictive maintenance (PdM) strategies apply prognostic 
models to forecast the equipment’s condition. Sufficiently 
accurate forecasting models of the failure modes are derived 
from repeated analysis and evaluation of collected data. Such 
models are trained to predict the equipment’s health, 
probability of failures, or a remaining useful lifetime. Collected 
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data may include sensor data used for PM or event-log 
information produced by a machine control or IT-system [3, 5]. 

In general, maintenance strategies can be applied on any 
type of equipment. However, the area of application of high-
level proactive strategies has practical limitations, as operating 
costs and costs for gathering knowledge and data for prediction 
models increase rapidly. While the generation of knowledge 
about statistical life information is relatively simple, generating 
accurate mathematical or physical models for predictions is 
very work- and time-intensive or even not possible. [4] 

This paper presents a data-driven approach for estimating 
the probability of milling machine breakdowns during a 
specified time interval in the future and proofs its validity on a 
real-world use case. The steps described give insights on data 
processing, feature extraction, machine learning, and 
estimations of the probability of machine breakdowns. The 
estimations are generated by an ensemble prediction approach, 
whose design and influence on the estimations is proposed in 
this paper. 

This paper is organized as follows: section 2 presents 
commonly used approaches for PdM. Section 3 describes the 
log-based PdM approach containing data preparation, applied 
feature selection, different methods for remaining useful 
lifetime (RUL) estimation, and algorithms applied for 
evaluation. Section 4 deals with applied experiments and 
results. Finally, the paper concludes with a discussion of results 
and suggestions for further research. 

2. Data-driven PdM in use 

Following Peng et al. [7], Schwabacher & Goebel [8], and 
Lee et al. [9], prognostic models can be classified as model-
based, data-driven or a combination of both. Furthermore, 
human expert knowledge may be added to any of these models. 
Like in condition based maintenance, model-based approaches 
are utilizing physics or expert knowledge to generate 
degradation models of a given equipment. The process of the 
equipment’s degradation is monitored by sensors and 
maintenance is triggered when exceeding a given threshold. As 
sensor-based approaches can be relatively easy implemented 
on the basis of existing condition-based maintenance strategies, 
they are commonly used. Data-driven approaches use historic 
data and machine learning technologies fitting mathematical 
models to reproduce a system’s behavior. In contrast to model-
based approaches, data-driven approaches require high amount 
or complex data. [6, 7, 8, 9] 

Data-driven models can be classified in sensor-based, log-
based, and hybrid approaches. Sensor-based approaches make 
use of time-series signals of single or multiple sensors without 
physical models to assess the remaining useful lifetime (RUL). 
Sensor-based approaches are often applied in mechanical 
engineering, mainly on rotatory machines or components [10, 
11, 12] such as bearings or gear-boxes. Log-based approaches 
use historical event-log data (instead of sensor data) to train 
machine learning algorithms. RUL estimation is implemented 
by a predetermined level of failure probability and applying the 
model on real-time event-log data. Event-log data can either be 
aggregated data from sensor streams or extracted data from log-
messages like system messages, alarm codes, numerical values, 

or keywords. As only relatively small portions of these large 
datasets are related to PdM, data preprocessing with techniques 
to extract relevant features that can be used for breakdown 
prediction are crucial for success. Log-based approaches are 
mainly applied in IT-systems like ATM’s [13, 14, 15]. 

Concluding, the major difference of log-based and sensor-
based is the data source and consequently the system’s 
behavior. Sensor-based PdM is a bottom-up approach which 
mainly monitors single components equipped with sensors. 
Whereas, log-based PdM is more like a top-down approach 
where many components can be monitored with the same data-
stream. However, there may be components without any 
possibility to monitor. Furthermore, features mined for log-
based PdM are often warnings which occur a certain period 
before a breakdown, thus this approach acts more like an early 
warning system than a continuous monitoring system. 

3. A log-based PdM approach in discrete parts 
manufacturing 

The log-based PdM approach introduced in this paper is 
designed for processing messages of programmable logic 
controllers (PLC) without using any additional sensors data. 
The equipment in scope are milling machines within a 
production line. The machine learning model to estimate the 
probability of machine breakdowns is based on historical PLC-
data and the documentation of breakdowns.  

The main steps of a log-based PdM approach are shown in 
Figure 1. The methodology for data preparation, feature 
selection, and the creation of the mathematical model will be 
described in this section. This section will conclude with 
presenting two different possibilities of RUL estimation. 

3.1. Data preparation and feature extraction 

Data preparation and feature extraction is performed in a 
two-step aggregation, a time window aggregation and a rolling 
window aggregation. Each aggregation step contains 
mathematical functions f for extracting features of the raw and 
first aggregated signals. 

For the time window aggregation, all raw signals r of 
different time resolution are aggregated into equally sized time 
windows tw for all timespans ts within a dataset. 

( )( )  ngcountFalliisFalling,ng,countRaisiisRaising,1 ,, =  ni f rrtw    (1) 

i … indices representing a ts within the dataset 
n … number of raw signals in a time window 

  

Fig. 1: Main steps of a log-based PdM approach; following [9, 10] 
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Equation (1) describes how raw signals are aggregated into 
tw. The given operators fα, for example isRaising or isFalling 
are defined to be 1 if a log-message is opened or closed within 
the tw. In some cases, a message is occurring multiple times in 
a tw, therefore countRaising and countFalling evaluate the 
number of messages opened and closed within that tw.  

The goal of the sample design aggregation is to construct 
datasets S ready for machine learning with related target values 
y. A single sample si is generated by aggregating time windows 
tw into a certain amount of concatenated rolling windows rw: 

 i
n

i
i rw

rwrws ,,0 = , (2) 

( )( )  diffaverage,max,min,
=

 j
i
k f twrw ,  (3) 

with 
i
k

i
k ubjlb  . (4) 

nrw … number of rolling windows 
 

The operators fβ in equation (3) aggregate tw signals into rw 
of larger size by the simple mathematical operations min, max, 
average and difference. Furthermore, rolling windows are 
unequally sized and as they are serial concatenated, time 
windows for aggregation are taken from previous timespans. 
The idea of non-equal sized rolling windows is implemented to 
weight their influence by their distance to the target value. 

The target values yi for each sample si are defined by RUL-
classes (RC). Each RC represents a determined timespan of 
time to failure (TTF) from the sample si to the next breakdown, 

( )ii TTFRCy = . (5) 

3.2. Feature selection 

For feature selection, two strategies were implemented. The 
first is selecting the 300 best features based on the ANOVA f-
value. The second is based on expert knowledge of maintainers 
and manually examining data for clusters of messages 
occurring before incidents.  

3.3. Model creation 

A random forest (RF) is used as the machine learning 
method to create a classification model. RF is an ensemble 
learning method to construct a collection of individual 
classification or regression trees. For construction of a single 
classification or regression tree, the algorithm selects a subset 
of samples of the whole dataset S. Besides sampling on the 
dataset, trees are randomized by using bagging and boosting 
techniques to generate splits, see [16, 17]. 

3.4. RUL estimation 

The scope of predictions is to estimate the probability of a 
breakdown POB in a determined timespan RC. This section 
presents the metric applied for evaluation and the RUL 
estimation methods.  

Table 1: Overview of two different methods of RUL estimation 

RUL 
estimation 
method 

Scope of prediction applied number of samples 

single sample 
method 

probability prediction 1 (sample si) 

ensemble 
method 

majority votes of 
ensemble prediction 

ne  (samples si, … ,si-(ne-1)) 
ne … number of samples in 
the ensemble 

 
Table 1 give an overview of the two methods. 

3.4.1. Metric for evaluation 
The proposed algorithm computes the probability of a 

breakdown in a future timespan RC. To evaluate its accuracy, 
we introduce a threshold thPOB to this probability above at 
which the algorithm is assumed to actually indicate a 
breakdown. Hence, we compute the hit-rate h as the number of 
correctly predicted breakdown’s (true positives (TP)) divided 
by the number of actually occurred breakdowns nbreakdowns, and 
the precision p as the TP divided by all predicted breakdowns, 
i.e. including false positive (FP) [18]. TP and FP are computed 
with respect to the chosen RC and representing the number of 
positive predictions where a real breakdown occurred within 
the duration of the lower and twice the upper bound of TTF of 
the suggested RC or not, 

FPTP
TPp
+

= , (6) 

breakdownsn
TPh = . (7) 

True negatives and false negatives are not evaluated because 
the training data design is just using target values for upcoming 
breakdowns and not using target values for non-breakdowns. 
Thus, the prediction condition can just be positive. [18] 

3.4.2. RUL estimation by the single sample method 
This classical prediction method uses only a single sample 

si for prediction. si is built as given in equations (2-4). A RF 
predicts the class probabilities of all predefined RC’s. They are 
computed as the mean class probability MCP of all trees in the 
forest. Thus, the POB for a predefined RC is defined as the 
related MCP of the prediction result. 

)(: i
RCRC

i MCPPOB s=   (8) 

3.4.3. RUL estimation by the ensemble method 
This approach is based on RF, which generates many 

predictions for a single sample by using a large amount of trees 
generated by ensemble learning [17]. The ensemble method 
extends RF by generating predictions with a set or ensemble of 
samples along time. The idea behind creating an ensemble  
of samples is to include more information of previous samples 
si-x which are not concerned by the single sample method using 
si only. Furthermore, the prediction result along time is 
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supposed to have less noise and fewer outliners by 
smoothening, which is done by averaging majority votes MV 
of single samples.  

Fig. 2 shows the architecture of an ensemble consisting of 
ne samples si-x with corresponding target values. In contrast to 
the single sample method where the target values are the same 
for all samples along i, the target values within an ensemble 
have to be updated for each sample si-x. The POBi of the 
ensemble prediction method is evaluated by a majority vote MV 
of each sample si-x of an ensemble. The MV of a sample  
si-x is defined to be 1 if the decision of the RF meets the 
supposed RCx and 0 otherwise: 



 =

= −
− otherwise0

if1
:)( xxi

xi
RC RC)MV(s

MV x s , (9) 

)(1:
1

0
xi

n

x

RC

e

RC
i

e
xMV

n
POB −

−

=
= s . (10) 

4. Use Case 

The presented log-based PdM approaches of section 3 are 
applied on real-world data from a discrete parts manufacturer 
now. Therefore, seven identical milling machines were chosen 
as the data source with a data history of 180 days. The data 
collected are breakdown documentations and messages of 
PLC’s. In total, 92 breakdowns were documented by the PLC 
and data included about 200.000 logged messages (of 2.540 
different message types). 

In the following, we describe all necessary steps of data 
preprocessing and RUL estimation. Furthermore, the 
experimental design and results will be outlined and discussed. 

For data preparation, all messages are aggregated into time 
windows twi using a constant timespan ts=2h. The design of a 
sample si by concatenated rolling windows i

krw  is given in 
Table 2 with nrw=5 rolling windows inside a sample.  

Table 2: Definition of rolling window sizes and positions for i
krw  in hours 

k rolling window size lower bound lbk upper bound ubk 

0 12 0 12 

1 36 12 48 

2 72 48 120 

3 120 120 240 

4 216 240 456 

 

Table 3: Aggregation operators for feature extraction 

Combination fα fβ 

1 isRaising 

isRaising 

max 

2 average 

3 countRaising min 

4 countRaising max 

5 countRaising average 

6 isFalling max 

Table 4: Definition of RUL-classes in hours 

RC TTF greater than [h] TTF smaller [h] 

1 0 24 

2 24 48 

3 48 84 

4 84 168 

5 168 336 

6 336 ∞ 

 
Applied aggregation operators for feature extraction are 

defined in Table 3 (see equation (1) and (3)). In total there are 
76.200 features (2.540 message types; 6 aggregation operators; 
5 rolling windows) created from all raw signals r (types of 
messages) along 2.160 timespans per machine. Knowledge-
based feature selection converts 18 selected types of messages 
resulting in 108 features.  

The number of RUL-classes and their bounds defined by 
TTF are set in Table 4. 

4.1. Experiment design 

This section provides information about data usage for 
model construction, experimental sets, applied metrics for 
model evaluation, and varied parameter for RF-optimization.  

The dataset was divided for model construction and 
evaluation. Model validation was not executed because of the 
small number of machines and breakdowns. The dataset was 
split as following: the data of two machines were used for 
model construction and the data of the remaining five machines 
were used for evaluation. 

The experiment-sets are defined by the applied RUL-
estimation method and the feature selection method as 
determined in Table 5. 

Each single experiment-set is evaluated 48 times by varying 
parameters for model construction. These are the number of 
trees nTrees in the RF and the minimum number of samples 

Table 5: Definition of methods for experiment-sets 

  feature selection 
  ANOVA f-value knowledge-based 

RU
L-

es
tim

at
io

n 

single sample 
method set a1 set k1 

ensemble method 
ne=120 set a2 set k2 

ensemble method 
ne=30 set a3 set k3 

 

Fig. 2: Architecture of samples for the ensemble method 
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Table 6: Parameter variation within each experiment-set 

parameter variation 

nTrees 100, 200, 300 

minsamples_leaf 8, 4, 2, 1 

thPOB 0.3, 0.4, 0.5, 0.6 

 
needed to be a leaf minsamples_leaf. Furthermore, each set is tested 
with different thresholds thPOB applied on the metric for 
evaluation. Within an experiment-set, all possibilities of 
combinations of all parameters are evaluated. The variation of 
all parameters is given in Table 6. 

All experimental-sets are evaluated by RC=3, predicting 
failures between 48h ≤ TTF < 86h in the future. Furthermore, 
the best set is evaluated for RC={1, 2, 3, 4, 5} to define the 
maximum forecasting horizon. 

4.2. Results 

In the following we show a comparison of results by the 
single sample and ensemble method, results generated by all 
experiment-sets for RC = 3 and the possible range of RC for 
estimating the POB.  

Figure 3 illustrates the different POB-curves for the single 
sample and ensemble method. As suggested, the ensemble 
method gives a smoother curve. This is a result of averaging 
the majority votes of each sample. 
 

Figure 4 and figure 5 present the results for RC=3 separated 
for ANOVA f-value and knowledge-based feature selection. 
The results of ANOVA f-value feature selection show a hit-rate 
h in between 0 to 0.5 and also a high variance on the precision 
p. This means, the results are very dependent on nTree, 
minsamples_leaf, and thPOB. Increasing the threshold thPOB result in 
a drop of the hit rate, but there were no patterns found for 
differences in nTree and minsamples_leaf. The dependence on thPOB 
can be explained by the higher possibility for exceeding a 
threshold at a lower value, as visualized in Figure 3. 
Experiment-set a2 (ensemble method with ne=120) is most 
independent of parameters and hence most stable. Furthermore, 
the hit-rate of set a2 is creating true positive estimations at any 
configuration (h>0.17) and the precision show a much smaller 
variance compared to set a1 and set a3. The results of 
knowledge-based feature selection show better performance in 

minimum and maximum hit-rate but perform worse in 
maximum precision.  

The best result of all experiment-sets was found with k3 
(ensemble prediction using ne=30). The minimum hit rate of 
k3 is even higher than the maximum hit rate of all experiments 
with ANOVA f-value feature selection but resulting in a little 
worse mean precision. Furthermore, this setting was very stable 
because of the low variance in hit rate and precision.  

The maximum forecasting horizon is evaluated by the 
ensemble method using knowledge-based feature selection 
only. Figure 6 shows the result of the predictability with a drop 
of the hit-rate after RC=4, representing a TFF between 84h and 
168h.  

Fig. 3: Schematic POB of the single sample and ensemble method for 
RC = 3, nTrees = 200 and minsamples_leaf = 8 

Fig. 4: Experiment results for ANOVA f-value feature selection 

Fig. 5: Experiment results for knowledge-based feature selection 

Fig. 6: Average performance of the ensemble method using knowledge-
based feature selection 
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5. Conclusion and further research 

This paper presents a data-driven log-based predictive 
maintenance approach which was applied and validated on a 
real-world use case. The performance of the introduced 
ensemble prediction method is in general more stable than a 
single sample method and in some cases outperforms it 
significant. The presented application on milling machines 
illustrates, that major breakdowns of these machines are 
predictable up to 168 hours in the future. Thus, many reactive 
maintenance operations can be precisely scheduled and 
resources as for example spare parts can be provided in the right 
place at the right time. Furthermore, maintenance costs can be 
optimized and costs for installing sensors and creating physical 
models can be avoided. On the other hand, the study showed 
that creating stable data-driven log-based models is very time 
consuming and its profitability has to be proven yet. 

The ensemble prediction method utilizes a random forest as 
the machine learning algorithm. In future, adoptions to combine 
this method with other machine learning algorithms may be of 
scientific interest. Changing the aggregation of the POB is 
going to enable optimization on the number of samples in the 
ensemble across different machine learning algorithms or even 
combinations of them. 

Comparing feature selection techniques showed a 
significant impact on the results regardless of the applied 
prediction method. Although, feature selection was not in the 
major scope of this paper, log-based PdM is highly influenced 
by the applied feature selection algorithm. Thus, further 
investigations should also consider feature selection in 
combination with other prediction methods into account. 
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